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Using microcanonical Monte Carlo simulations, we present numerical evidence that the phase transition in
the four-dimensional compact U~1! lattice gauge theory with the Wilson action is weakly first order.
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The four-dimensional compact U~1! lattice gauge theory
is known to have a phase transition that separates a high-
temperature confining phase from a low-temperature ‘‘mass-
less’’ Coulomb phase@1–3#. The order of the transition is
still controversial. Old numerical evidence suggested that
this phase transition is second order@4–10#. However, some
early simulations and more recent studies@11–14# show a
two-state signal at the transition, indicating the possibility of
a weakly first-order phase transition, although the evidence
presented is numerical in nature and far from conclusive.

The above-mentioned numerical results were obtained us-
ing standard canonical distribution Monte Carlo simulations.
To study the order of the transition, it may be advantageous
to use instead a microcanonical simulation of the
system @15–22#. In contrast with canonical ensemble simu-
lations, microcanonical simulations are able to map the meta-
stable and unstable regions of the phase diagram, if they
exist, giving a clear signal for the first-order phase transi-
tions. In a microcanonical simulation a characteristic
S-shaped curve for the caloric equation of the system
E5E~b!, whereE is the internal energy andb the inverse
temperature, indicates a first-order phase transition. Evidence
of the existence of these metastable and unstable regions for
the compact U~1! lattice gauge theory will greatly support
the claim of a first-order transition. Failure to see these re-
gions in a microcanonical simulation will be supporting evi-
dence for the claim of a second-order transition.

From the point of view of the microcanonical ensemble,
one fixes the internal energyE and computes a microcanoni-
cal inverse temperatureb5b~E!. A first-order phase transi-
tion arises in this context from the existence of a convex
region in the microcanonical entropy functionS5S(E). This
region corresponds to the unstable part of the phase diagram
~negative specific heat!, and can happen in finite systems.
This also suggests that the effect of a first-order phase tran-
sition may appear in microcanonical simulations more
clearly in small size systems without having to take a formal
thermodynamic limit as in the canonical ensemble simula-
tions.

There are several ways of performing microcanonical
simulations, all of them more or less equivalent, at least in
the thermodynamic limit. For instance, one can introduce an
extra degree of freedom, usually called the ‘‘demon’’@14#,
and let the original system and the demon perform an appro-
priate random walk with total constant energyE. The demon
is allowed to interchange energy with the system, subject to
the restriction that its energy cannot be negative. If the sys-
tem is large enough, the demon will reach thermodynamic
equilibrium with a Boltzmann distribution from which one
can estimate the inverse temperatureb. For a continuous
system, and neglecting exponentially small terms, the inverse
temperature is obtained by

b5
1

^ED&
, ~1!

where ^ED& is the average demon’s energy. One can also
perform microcanonical simulations based exclusively on the
microcanonical distribution@17,18# without requiring a de-

FIG. 1. Results of simulations for lattice linear sizeL54.
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mon that reaches thermodynamic equilibrium. IfG~E! is the
volume of phase space with energy less than or equal toE,
the microcanonical ensemble entropyS(E) can be defined by

S~E!5kB loge„G~E!…, ~2!

where kB is the Boltzmann constant. In the absence of a
first-order phase transition,S(E) is concave everywhere. The
inverse temperatureb is computed from Eq.~2! by

b5
1

kBT
5
1
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]S~E!

]E
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] loge„G~E!…

]E
. ~3!

To test for the presence of a convex region inS5S(E),
we only need to evaluate numerically the last derivative in
Eq. ~3!, and look for regions in whichb increases withE
~unstable region!. To achieve this we can approximate nu-
merically this derivative@17#. If DE is a small energy incre-
ment, we can obtainb numerically by

b'
loge„G~E!/G~E2DE!…

DE
. ~4!

The ratio of phase space volumes inside the logarithm in Eq.
~4! can be estimated by counting the number of times that, in
an appropriate random walk in phase space, the system visits
the region with energy betweenE2DE andE.

One can computeb using Eq.~4! and ~1! simultaneously
if one assumes that, as the system moves in the random walk,
the demon has energyE minus the energy of the system.
This allows us to double check that the assumption of ther-
mal equilibrium for the demon gives the same results as the
microcanonical ensemble.

For our simulations we have used a four-dimensional cu-
bic lattice with periodic boundary conditions, and linear sizes
L of 4, 6, and 8. For the Hamiltonian of the system we have
used the standard Wilson action@23#

H5(
Plaq

„12cos~up!…, ~5!

whereup is the angle associated with each plaquette of the
lattice, and the sum in Eq.~5! is over all oriented plaquettes.
For the purpose of the simulation we have discretized the
U~1! group to aZ5000 group.

The results of the simulations for the three lattice sizes
~L54, 6, and 8! are shown in Figs. 1, 2, and 3. As it is to be
expected, the data for the larger lattice~L58! is more noisy.
It is, however, accurate enough to see clearly the existence of
metastable and unstable regions. The solid lines in the fig-
ures are only to guide the eye, and are the cubic polynomial
fit to the data near the transition. Each point in the figures
was obtained from averages over 5–103106 lattice updates.
The inverse temperatures computed with Eqs.~1! and ~4!
were in all cases consistent within the statistical uncertainties
of the simulation. There is also an expected small shift of the
temperature of the transition as the system converges, for
larger lattices, to the thermodynamic limit.

These figures show very clearly a very small~note the
scale in theb axis! unstable region, of approximately the
same size for the three lattices used, indicating that the tran-
sition is of first order. The difference inb from the bottom to
the top of the unstable region is only about 0.004–0.005.
Note that because of the small size~in beta! of the metastable
regions, a large number of Monte Carlo iterations are neces-
sary to resolve it. These results give strong support to the
claim that the transition in the pure compact U~1! lattice
gauge theory is weakly first order. Simulations involving
larger lattice sizes and with coupling to Higgs fields are un-
derway, and will be presented elsewhere@24#.

Part of this research was conducted using the Pittsburgh
Supercomputer Center and the Academic Computing facili-
ties of Frostburg State University, where this work was ini-
tiated.
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